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La probabilité de détection des erreurs d’enregistrement de filiation à travers l’utilisation de loci
codominants

La grande variété de formules proposées pour le calcul des probabilités d’exclusion de filiation erronée est
vraiment déconcertante. Le présent travail essaie de donner une formule générale en considérant tous les cas
possibles. Le génotype du parent non contesté peut ne pas être connu. En effet, dans certaines études d’exclusion
du père, aucune information n’est disponible en ce qui concerne le génotype de la mère. Dans ces cas,
l’augmentation du nombre de marqueurs utilisés peut compenser ce manque d’information. Cependant, pour que
la connaissance du génotype de la mère soit utile, il faut que l’individu dont la filiation est contestée soit
hétérozygote et que son génotype soit différent de celui de sa mère. Par ailleurs, l’absence d’équilibre de Hardy-
Weinberg ou de liaison, pour les marqueurs utilisés pour la vérification de la filiation, ne semble pas avoir une
solution simple et claire.

Mots clés : Généalogie erronée – Contrôle de parenté – Probabilité théorique

The probability of detecting erroneously assigned parentage using co-dominant loci

The variability of formulae nowadays proposed to calculate theoretical probabilities for the exclusion of
erroneous parentage could be disconcerting. This work tries to give a general formula considering all possible
cases. The genotype of the not contested parent is not always available. Effectively, in some studies of sire
exclusion, the information on the genotype of the dam could be lacking. In such cases, increasing the number of
the loci used, can balance this lack of information. However, the knowledge of the dam genotype is informative
only when the genotype of the individual with contested parentage is heterozygous and different from that of its
dam. On the other hand, the lack of Hardy-Weinberg or linkage equilibrium for the loci used for parentage
exclusion do not seem to have a simple and clear solution.
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INTRODUCTION

Several formulae were proposed to calculate the
theoretical probability for detecting falsely
recorded parents using genetic incompatibilities
(Chakraborty & Schull, 1976; Garber & Morris,
1983; Jamieson, 1965 & 1994). Although all theses
formulae are generally based on allelic frequencies
of the putative parents, the discordance between
results stemming from different formulae is a bit
disappointing. Researchers or technical staff
working in parentage exclusion need a unified
criterion to apply under rather broad conditions, in
order to calculate the required probabilities.

This work aims to discuss some of the already
existing formulae and revise all the cases of
parentage exclusion, presenting a unified
formulation through elementary topics of
population genetics.

The theoretical population assumed is one of a
large size under both Hardy-Weinberg and linkage
equilibria for all the loci considered. The
polymorphism used is for autosomal genes, and
could be a result of studies via microsattelites
(Tautz, 1989), Restriction Length Fragment
Polymorphism (RLFP, Botstein et al., 1980), or
Single Strand Conformation Polymorphism
(SSCP, Orita et al., 1989) or even protein
polymorphism via electrophoretic techniques
(Smithies, 1955).

Only sire exclusion probability will be explained,
since the same formulae will apply to the dam
exclusion probability. Albeit, sire exclusion
probability will depend on the dam genotype of the
individual whose parentage is contested,
knowledge of such a genotype will sometimes
improve the exclusion process.

Nevertheless, this information is not always
available, especially in the case of small ruminants
under rather extensive managerial conditions, e.g.
sheep and goats in central and south-eastern
Spain and northern Morocco.

DISCUSSION

1.When the dam genotype is not known

The formula of sire exclusion probability, when the
dam genotype is not known, was initially proposed
by Garber & Morris (1983). Assume a single locus
with two alleles: A and B with frequencies p1 and
p2, respectively. The genotypic frequencies will be
p1

2, 2p1p2, and p2
2 for genotypes AA, AB and BB,

respectively, in individuals population, as well as
in dams or in sires population. If an individual i is
taken at random, its genotype could be:
- AA with probability p1

2, therefore, the genotype
of sire of i should contain at least one allele A, i. e.
possible sires of i should have one of the two
genotypes: AA or AB. Then the excluded sires are
those with genotype BB. Consequently, the
proportion of these excluded sires in the sires’
population is p1

2p2
2.

- BB with probability p2
2, therefore, the genotype

of sire of i should contain at least one allele B, i. e.
possible sires of i should have one of the two
genotypes: BB or AB. Then the excluded sires are
those with genotype AA. Consequently, the
proportion of these excluded sires in the sires’
population is p2

2p1
2.

- AB with probability 2p1p2, therefore, the
genotype of sire of i should contain at least one
allele A or one allele B, i.e. possible sires of i
should have one of the following genotypes: AA,
AB or BB. Then no sires would be excluded.
Consequently, the proportion of excluded sires is
zero.

Then the theoretical probability of sire exclusion
(PPX), using one locus with 2 alleles is:

PPX=p1
2p2

2+p2
2p1

2+2p1p20

Arranging:

PPX=p1
2(1-p1)2+p2

2(1-p2)2+2p1p2(1-p1-p2)2

When the locus considered is with three alleles: A,
B and C, say, with frequencies p1, p2 and p3,
respectively, the same reasoning, as summarised
in table 1, leads to the following expression:

PPX=p1
2(p2

2+p3
2+2p2p3)+p2

2(p1
2+p3

2+2p1p3)+p3
2(p1

2+p2
2+2p1p2) +2p1p2p3

2+2p2p3p1
2+2p1p3p2

2

Arranging:

PX=p1
2(p2+p3)2+p2

2(p1+p3)2+p3
2(p1+p2)2+2p1p2p3

2+2p1p3p2
2+2p2p3p1

2
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It follows:

PPX=p1
2(1-p1)2+p2

2(1-p2)2+p3
2(1-p3)2+2p1p2(1-p1-p2)2 +2p1p3(1-p1-p3)2+2p2p3(1-p2-p3)2

When the locus considered is with four alleles: A, B, C and D, say, with frequencies p1, p2, p3 and p4,
respectively, the same reasoning, as summarised in table 2, conduces to the following expression:

PPX=  p1
2(p2

2+p3
2+p4

2+2p2p3+2p2p4+2p3p4) +p2
2(p1

2+p3
2+p4

2+2p1p3+2p2p4+2p3p4)
         +p3

2(p1
2+p2

2+p4
2+2p1p2+2p1p4+2p2p4) +p4

2(p1
2+p2

2+p3
2+2p1p2+2p1p3+2p2p3)

         +2p1p2(p3
2+p4

2+2p3p4)+2p1p3(p2
2+p4

2+2p2p4) +2p1p4(p2
2+p3

2+2p2p3)+2p2p3(p1
2+p4

2+2p1p4)
         +2p2p4(p1

2+p3
2+2p1p3)+2p3p4(p1

2+p2
2+2p1p2)

Arranging:

PPX=  p1
2(1-p1)2+p2

2(1-p2)2+p3
2(1-p3)2+p4

2(1-p4)2+2p1p2(1-p1-p2)2+2p1p3(1-p1-p3)2+2p1p4(1-p1-p4)2

         +2p2p3(1-p2-p3)2+2p2p4(1-p2-p4)2+2p3p4(1-p3-p4)2

It follows that the general formula for sire
exclusion using one locus with n alleles, when the
dam genotype is not known, is:

  

PPX = pi
2 1−pi( )

i=1

n

∑ 2+ 2pip j 1−pi−p j( )2

j=i+1

n

∑
i=1

n−1

∑

2. When the dam genotype is known

In the case of a single locus with two alleles,
applying the same conditions as when the dam
genotype was not known, if an individual is taken
at random from the population, its genotype could
be:
- AA with probability p1

2. If the dam is AA, this
event have a probability p1 (Table 3), legitimate
sires should transmit one A. Then the excluded
sires are those with genotype BB. If the dam
genotype is AB with probability p2, legitimate
sires should transmit one A. Then the excluded
sires are those with genotype BB. The occurrence
of a dam with genotype BB is impossible.
Therefore, when the individual genotype is AA,
the probability of excluded sires is p1

2(p1+p2)p2
2,

which is equal to p1
2(1-p1)2. This is the same

probability as in the case when the dam genotype
was not known.

- BB with probability p2
2, therefore, the probability

of excluded sires is p2
2(p2+p1)p1

2, which is equal to
p2

2(1-p2)2; is the same probability as in the case
when the dam genotype was not known.
Consequently, when the individual is
homozygous, knowing the dam genotype do not
bring any information to improve sire exclusion
probability.

Table 1. Probability of sire exclusion, when
ignoring the dam genotype, for an
individual I randomly chosen with a
probability P(I), using one locus with
three alleles: A, B, and C, with frequencies
p1, p2 and p3, respectively

I P(I) Possible sires Excluded sires Exclusion
probability

AA p1
2 AA, AB, AC BB, BC, CC p2

2+2p2p3+p3
2

BB p2
2 AB, BB, BC AA, AC, CC p1

2+2p1p3+p3
2

CC p3
2 AC, BC, CC AA, AB, BB p1

2+2p1p2+p2
2

AB 2p1p2 AA, AB, AC, BB, BC CC p3
2

AC 2p1p3 AA, AB, AC, BC, CC BB p2
2

BC 2p2p3 AB, AC, BB, BC, CC AA p1
2

Table 2. Probability of sire exclusion, when
ignoring the dam genotype, for an
individual I randomly chosen with a
probability P(I), using one locus with four
alleles : A, B, C and D with frequencies p1,
p2, p3 and p4, respectively

I P(I) Excluded sires Exclusion probability

AA p1
2 BB, BC, BD, CC, CD, DD p2

2+2p2p3+2p2p4+p3
2+2p3p4+p4

2

BB p2
2 AA, AC, AD, CC, CD, DD p1

2+2p1p3+2p1p4+p3
2+2p3p4+p4

2

CC p3
2 AA, AB, AD, BB, BD, DD p1

2+2p1p2+2p1p4+p2
2+2p2p4+p4

2

DD p4
2 AA, AB, AC, BB, BC, CC p1

2+2p1p2+2p1p3+p2
2+2p2p3+p3

2

AB 2p1p2 CC, CD, DD p3
2+2p3p4+p4

2

AC 2p1p3 BB, BD, DD p2
2+2p2p4+p4

2

AD 2p1p4 BB, BC, CC p2
2+2p2p3+p3

2

BC 2p2p3 AA, AD, DD p1
2+2p1p4+p4

2

BD 2p2p4 AA, AC, CC p1
2+2p1p3+p3

2

CD 2p3p4 AA, AB, BB p1
2+2p1p2+p2

2
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- AB with probability 2p1p2, therefore, if the dam
genotype is also AB, no sires are excluded, as in
the case when the dam genotype was not known.
However, when the dam genotype is not AB, i.e.
dam genotype is different from the individual
genotype, further sire could be excluded than in
the case when the dam genotype was not known
(Table 4).

Thus, summing up, when the individual is
homozygous or the individual and his dam have
the same genotype, knowing the genotype of the
dam does not increase sire exclusion probability.
Nevertheless, in the remaining cases, knowledge
of the dam genotype gives a valuable information
that allows increasing the proportion of falsely
assigned sires detected. This could be confirmed

Table 4. Probability of sire exclusion, when
considering M the dam genotype, for an
individual I randomly chosen with a
probability P(I), using one locus with two
alleles : A and B with frequencies p1 and
p2, respectively

I P(I)  M P(M) Excluded sires Exclusion
probability

AA p1 BB p2
2

AA p1
2 AB p2 BB p2

2

BB 0 - -
AA 0 - -

BB p2
2 AB p1 AA p1

2

BB p2 AA p1
2

AA 0.5p1 AA p1
2

AB 2p1p2 AB 0.5 None 0
BB 0.5p2 BB p2

2

Table 3. Deduction of dam genotype distribution
according the offspring genotype, using
one locus with two alleles : A and B with
frequencies p1 and p2, respectively

D.m. A.d.f.g. A.d.m.g. D.o.g.*

 A (p1) B (p2) AA AB BB

AA (p1
2) A (p1

2) AA (p1p1
2) AB (p2p1

2) p1 0.5 p1 0
AB (2p1p2) A (p1p2) AA (p2p1

2) AB (p1p2
2) p2 0.5 p1

B (p1p2) AB (p2p1
2) BB (p1p2

2)
BB (p2

2)  B (p2
2) AB (p1p2

2) BB (p2p2
2) 0 0.5 p2 p2

D.g. : Dam genotype ; A.d.f.g. : Allele distribution in female gametes ; A.d.m.g. :
Allele distribution in male gametes ; D.o.g. : Distribution of offspring genotype
* Obtained after arrangement, e.g. if the offspring is AA, the dam is AA with
probability p1p1

2/( p1p1
2+ p2p1

2) or AB with probability p2p1
2/( p1p1

2+ p2p1
2).

when applying the same reasoning to a locus with
3 or 4 alleles (Tables 5 and 6). Then, the probability
of sire exclusion, knowing the genotype of the dam,
PPDX, could be deduced from table 6 as follow:

1. The individual is homozygous for the considered
locus, AA, say (first case in Table 6), the term
under Exclusion probability (last column in
Table 6) reduces to (1-p1)2, the terms under P(M)
(second column in Table 6) sum to 1. Then
multiplying by p1

2, the probability of AA, we
obtain p1

2(1-p1)2. Thus, summing for all the
other alleles, substituting i for 1, we obtain
[Eq.1]:

  
pi

2 1− p1( )2

i=1

n

∑ [Eq. 1]

This is exactly the same expression as when the
dam genotype was not known. Effectively the
same sires are excluded in both cases (Tables 2
and 6).

2.The individual is heterozygous for the
considered locus, AB, say (fifth case in Table 6),
in all the rows of this fifth case the sires with
genotype CC, CD or DD are always excluded.
These are the same sires which were excluded
when the dam genotype was not known (Tables 2
and 6). Their corresponding exclusion
probability is 2p1p2(p3

2+2p3p4+p4
2), which

reduces to 2p1p2(1-p1-p2)2. Nevertheless, when
the dam genotype is different from the individual
genotype (the dam genotype is not AB), further
sires are excluded. Effectively, in second, third
and fourth rows of this fifth case, sires with
genotype AA, AC or AD are also excluded. Their
corresponding exclusion probability is obtained
summing all the corresponding terms under
P(M) and multiplying this resulting sum times
the corresponding terms among those remaining
under Exclusion probability, i.e. 2p1p2[0.5(p1+p3
+p4)(p1

2+2p1p3 +2p1p4)], which reduces to
2p1p2[0.5(p1-p1p2)(2-p1-2p2)]. In fifth, sixth and
seventh rows of this fifth case, likewise, sires
with genotype BB, BC or BD are excluded. Their
exclusion probability is, likewise, 2p1p2[0.5(p2-
p2p1)(2-p2-2p1)].

Combining All these expressions and summing
over all the alleles (substituting i for 1 and j for 2)
we obtain equation 2 [Eq. 2].

Then, the general expression of sire exclusion
probability using one locus with n alleles, knowing
the dam genotype, is [Eq. 3].
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Table 5. Probability of sire exclusion, when
considering M the dam genotype, for an
individual I randomly chosen with a
probability P(I), using one locus with
three alleles : A, B and C with frequencies
p1, p2 and p3, respectively

I P(I) M P(M) Excluded sires Exclusion
probability

AA p1 BB, BC, CC p2
2+2p2p3+p3

2

AB p2 BB, BC, CC p2
2+2p2p3+p3

2

AA p1
2 AC p3 BB, BC, CC p2

2+2p2p3+p3
2

BB 0 - -
BC 0 - -
CC 0 - -
AA 0 - -
AB p1 AA, AC, CC p1

2+2p1p3+p3
2

BB p2
2 AC 0 - -

BB p2 AA, AC, CC p1
2+2p1p3+p3

2

BC p3 AA, AC, CC p1
2+2p1p3+p3

2

CC 0 - -
AA 0 - -
AB 0 - -

CC p3
2 AC p1 AA, AB, BB p1

2+2p1p2+p2
2

BB 0 - -
BC p2 AA, AB, BB p1

2+2p1p2+p2
2

CC p3 AA, AB, BB p1
2+2p1p2+p2

2

AB 0.5(p1+p2) CC p3
2

AA 0.5p1 AA, AC, CC p1
2+2p1p3+p3

2

AB 2p1p2 AC 0.5p3 AA, AC, CC p1
2+2p1p3+p3

2

BB 0.5p2 BB, BC, CC p2
2+2p2p3+p3

2

BC 0.5p3 BB, BC, CC p2
2+2p2p3+p3

2

CC 0 - -
AC 0.5(p1+p3) BB p2

2

AA 0.5p1 AA, AB, BB p1
2+2p1p2+p2

2

AC 2p1p3 AB 0.5p2 AA, AB, BB p1
2+2p1p2+p2

2

BB 0 - -
BC 0.5p2 BB, BC, CC p2

2+2p2p3+p3
2

CC 0.5p3 BB, BC, CC p2
2+2p2p3+p3

2

BC 0.5(p2+p3) AA p1
2

BB 0.5p2 AA, AB, BB p1
2+2p1p2+p2

2

BC 2p2p3 AA 0 - -
AB 0.5p1 AA, AB, BB p1

2+2p1p2+p2
2

AC 0.5p1 AA, AC, CC p1
2+2p1p3+p3

2

CC 0.5p3 AA, AC, CC p1
2+2p1p3+p3

2

Table 6. Probability of sire exclusion, when
considering M the dam genotype, for an
individual I randomly chosen with a
probability P(I), using one locus with
four alleles: A, B, C and D with
frequencies p1, p2, p3 and p4, respectively

I P(I) M P(M) Excluded sires     Exclusion  probability

AA p1 BB, BC, BD,
CC, CD, DD p2

2+2p2p3+2p2p4+p3
2+2p3p4+p4

2

AB p2 BB, BC, BD,
CC, CD, DD p2

2+2p2p3+2p2p4+p3
2+2p3p4+p4

2

AC p3 BB, BC, BD,
CC, CD, DD p2

2+2p2p3+2p2p4+p3
2+2p3p4+p4

2

AD p4 BB, BC, BD,
CC, CD, DD p2

2+2p2p3+2p2p4+p3
2+2p3p4+p4

2

AA p1
2 BB 0 - -

BC 0 - -
BD 0 - -
CC 0 - -
CD 0 - -
DD 0 - -

BB p2
2 . . . .

CC p3
2 . . . .

DD p4
2 . . . .

AB 0.5(p1+p2) CC, CD, DD p3
2+2p3p4+p4

2

AA 0.5p1 CC, CD, DD,
AA, AC, AD p3

2+2p3p4+p4
2+p1

2+2p1p3+2p1p4

AC 0.5p3 CC, CD, DD,
AA, AC, AD p3

2+2p3p4+p4
2+p1

2+2p1p3+2p1p4

AD 0.5p4 CC, CD, DD,
AA, AC, AD p3

2+2p3p4+p4
2+p1

2+2p1p3+2p1p4

AB 2p1p2 BB 0.5p2 CC, CD, DD,
BB, BC, BD p3

2+2p3p4+p4
2+p2

2+2p2p3+2p2p4

BC 0.5p3 CC, CD, DD,
BB, BC, BD p3

2+2p3p4+p4
2+p2

2+2p2p3+2p2p4

BD 0.5p4 CC, CD, DD,
BB, BC, BD p3

2+2p3p4+p4
2+p2

2+2p2p3+2p2p4

CC 0 - -
CD 0 - -
DD 0 - -

AC 2p1p3 . . . .
AD 2p1p4 . . . .
BC 2p2p3 . . . .
BD 2p2p4 . . . .
CD 2p3p4 . . . .

  

2p1p j 1− pi − p j( )2
+ 0.5 pi − pip j( ) 2 − pi − 2p j( ) + p j − p jpi( ) 2 − p j − 2pi( )[ ]





j=i+1

n

∑
i=1

n−1

∑ [Eq. 2]

  

PPDX = pi
2

i=1

n

∑ 1− pi( )2 + 2pip j 1− pi − p j( )2
+ 0.5 pi − pip j( ) 2 − pi − 2p j( ) + p j − p jpi( ) 2 − p j − 2pi( )[ ]





j=i+1

n

∑
i=1

n−1

∑ [Eq.3]
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It is clear that the knowledge of dam genotype
increases the exclusion probability of erroneously
assigned sires since the right most term, which
does not appear in the expression when the dam
genotype was ignored  (PPX), is always positive.
Nevertheless such an increase is worthwhile only
in the case of a locus with a small number of alleles,
i.e. a locus with a reduced polymorphism.

Effectively, Table 7 allows a comparison between
some values of the probability of sire exclusion,
when ignoring or when considering the dam
genotype, for an increased number of loci, with 2 to
20 alleles each (the alleles of the same series
having the same allelic frequency).

In the case of a locus with two alleles, considering
the dam genotype increases the exclusion
probability by 50%, whilst, in the case of a locus
with 20 alleles, considering the dam genotype
increases this probability by about 10% only.  Such
an increase is further reduced when using more
than one locus, e.g. when using five loci with ten
alleles each the increase is only 0.4%.

Therefore, as a first consequence of this latter fact,
when the dam genotype is not known, increasing
the number of loci used should compensate for such
a lack of information.

The second consequence is that when the loci are
highly polymorph, the knowledge of the individual

Table 7. Some values of the probability of sire exclusion, when the dam genotype is not known (PPX), and
when this genotype is known (PPDX), according to the number of loci and alleles used

Loci

............. 1 ........... ............ 5 ............. ........... 10 ............. ........... 15 ............... ............ 20 ............

Alleles* PPX PPDX PPX PPDX PPX PPDX PPX PPDX PPX PPDX

   2 0.1250 0.1875 0.4871 0.6459 0.7369 0.8746 0.8651 0.9556 0.9307 0.9843

   4 0.3281 0.5039 0.8631 0.9700 0.9813 0.9902 0.9974 1.0000 0.9996 1.0000

   6 0.4861 0.6842 0.9642 0.9954 0.9987 0.9991 1.0000 1.0000 1.0000 1.0000

   8 0.5879 0.7434 0.9881 0.9989 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000

 10 0.6570 0.7947 0.9953 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

 12 0.7066 0.8291 0.9978 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

 16 0.7725 0.8723 0.9994 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

 20 0.8146 0.8981 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

* All alleles of the same series with the same frequency

and the sire genotype are the only mandatory
information

3. More than one locus

Using a single locus could not be efficient enough in
order to reach the required exclusion probability.
The number of alleles for the used locus could be
small, not allowing in this way to reach the
required value of exclusion.

Using two or more loci together solves this
problem. Such loci should, however, be in linkage
equilibrium to ensure that the genotypic
frequencies of two loci are therefore independent,
and they could be multiplied in order to get the
combined genotypic frequencies.

Bearing in mind this condition, and following Boyd
(1954), the expression of the global probability of
parentage exclusion GPX, using m loci is [Eq. 4]:

  
GPX = 1−

l=1

m

∏ 1− PPX1( ) [Eq. 4]

Or when the dam genotype is considered [Eq. 5]:

  
GPX = 1−

l=1

m

∏ 1− PPDX1( ) [Eq. 5]
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4. When equilibria conditions do not hold

When the population under study is not under
Hardy-Weinberg equilibrium, the expressions
above can be expressed in terms of genotypic
rather than allelic probabilities. The expressions
get quite complicated. Furthermore, the inference
about the values of exclusion probability obtained
will be valid only in the generation in which they
were calculated. Chakraborty et al. (1988) had
tackled the problem when allelic frequencies are
different between males and females. This is one
case where Hardy-Weinberg equilibrium is not
assumed. But the formulae outlined by these
authors lay on the fact that both male population
and female population are each under Hardy-
Weinberg equilibrium. A quite less probable
situation (females are in equilibrium, males are in
equilibrium but the whole population is not),
making, therefore, of little uses the proposed
formulae. Usha et al. (1995) proposed a quite
tedious method (PRASE) to circumvent the lack of
both Hardy-Weinberg and linkage equilibria. But,
such a formulation could only apply to the
generations present in the sample where it was
calculated. Because, in such a case no inference to
the population could be made as the genotypic
frequencies could vary in the next generations.
Furthermore, lack of equilibrium could rise in
small size samples as a consequence of sampling
errors. Nevertheless, a theoretical probability
should not be deduced from a small size sample.
Because the methodology used (Maximum
Likelihood) in order to estimate probabilities from
sample observed frequencies gives asymptotically
best estimates, i.e. they have small error variance
only when the sample size get large.
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