Management of plant parasitic nematodes by means of organic amendment

F. MOKRINI¹, S. JANATI^{1,3}, A. HOUARI³, A. ESSARIOUI², R. BOUHARROUD¹, A. MIMOUNI¹

(Reçu le 10/03/2018; Accepté le 11/04/2018)

Abstract

Plant parasitic nematodes (PPN) are one of the major biological constraints in various economically important crops across the world. The use of nematicides as an effective means for the control of PPN can be environmentally hazardous. Alternatively, the utilization of organic amendments has been proposed as a suitable and economically feasible method for managing plant parasitic nematodes. In this review we provide information from across multiple studies on the use of soil organic amendment as a promising approach for suppressing plant parasitic nematodes, enhancing plant productivity, and promoting global food security.

Keywords: Nematodes, organic amendment, crops, nematicides.

Gestion des nématodes phytoparasites au moyen d'amendements organiques

Résumé

Les nématodes phytoparasites constituent l'un des principales contraintes biotiques dans la production de différentes cultures dans diverses régions du monde. L'utilisation de nématicides comme moyen efficace de lutte contre les NPP peut être dangereuse pour l'environnement. Alternativement, l'utilisation des amendements organiques a été proposée comme méthode appropriée et économiquement réalisable pour la gestion des nématodes phytoparasites. Dans ce travail, nous fournissons des informations provenant de multiples études sur l'utilisation de l'amendement organique du sol comme une approche prometteuse pour supprimer les nématodes phytoparasites, améliorer la productivité des plantes et promouvoir la sécurité alimentaire mondiale.

Mots-clés: Nématodes, amendement organique, cultures, nématicides.

INTRODUCTION

Plant parasitic nematodes (PPN) are one of the major biological constraints in the production of various economically important crops, distributed across the world and cause large losses. The annual global loss in horticultural crops due to PPN has been estimated at 8.8-14.6% of total crop production, equivalent to 100-157 billion US dollars (Abad et al., 2008; Nicol et al., 2011). These nematodes can be managed by cultural practices, chemical nematicides and resistant cultivars.

In intensive crop production systems, PPN have been controlled mainly by nematicides and chemical soil fumigants for decades. However, in recent years, several nematicides have been withdrawn from the market due to environmental and human health concerns. In addition, nematicides often do not provide long-term suppression of the pathogen.

In many cases, crop losses are reduced by the annual application of expensive and highly toxic soil fumigants or non-fumigant nematicides. These chemicals cause serious health and environmental hazards and therefore their application is not sustainable. In addition, the economic cost of chemicals is a major obstacle for many farmers. Therefore, there is a need for alternate management options against PPN.

Presently, researchers have diverted their attention to manage PPN through the use of organic amendments (Linford, 1939, Faruk et al., 2001) as one of the most promising solution to manage plant parasitic nematodes (Linford, 1939) and to improve soil fertility and structure. In the last few years, there has been an increasing interest in using soil amendments and other composted materials to suppress plant parasitic nematodes (Akhtar and Malik, 2000). Organic amendments can be divided into two broad categories: (i) amendments that are cultivated in situ and are incorporated into the soil such as green manure, cover crops, crop residues, industrials wastes (oil seed cakes) or town wastes (ii) amendments transported from elsewhere into the field such as composted animal manure and composted yard material or animal waste.

MANAGEMENT APPROACH OF PPN

Compared to other pathogens, PPN are sometimes difficult to control because they live in the soil and possess a great ability to attack almost every part of the plant. Soil organic amendments can be successfully employed for the control of PPN. Many types of organic amendments such as nematicidal plants, compost, protein-rich wastes, animal and green manures have been examined for their effect on suppressing PPN (Oka, 2010). The use of organic amendments can reduce disease caused by nematodes directly by affecting soil properties and indirectly by improving plant growth, changing root physiology and enhancing populations of antagonistic microorganisms, and productivity (Adegbite and Adesiyan, 2005).

¹Institut National de la Recherche Agronomique (INRA), UR-Production intégrée des cultures, Laboratoire de Nématologie, Agadir-Maroc. fmokrini.inra@gmail.com ² Institut National de la Recherche Agronomique (INRA), Centre Régional d'Errachidia
³ Faculté polydisciplinaire de Taroudant, Laboratoire des Biotechnologies, Valorisation et Environnement

NEMATICIDAL ACTIVITY OF PLANT EX-TRACT

Most studies worldwide have focused on root-knot nematodes (*Meloidogyne spp.*; RKNs) that attack more than 2000 plant species causing galls on roots (Jones *et al.*, 2013). Thirteen new species of *Meloidogyne* have been identified in the last decade, totaling more than 100 recognized species in the genus (Elling, 2013) but only four *Meloidogyne* species (*M. javanica*, *M. arenaria*, *M. hapla* and *M. javanica*) are considered major plant pests worldwide (Hunt and Handoo, 2009).

Yield losses due to RKNs frequently cited for vegetables are 10 % (Koenning *et al.*, 1999). For example, Sasser and Carter (1985) reported yield losses of 22-30 % on tomato due to *Meloidogyne incognita*. In Western Anatolia-Turkey, *Meloidogyne* spp. caused up to 80 % yield losses in processing tomato-growing areas (Kaskavalci, 2007). Similarily, yield losses that attained 30% in three highly susceptible vegetables crops (melon, egg-plant and tomato) have been reported by Sikora and Fernandez (2005). Verdejo-Lucas *et al.*, (1994) reported yield reduction of 61% in tomato due to the density in soil of 4750 juveniles of 250 cm⁻³ of *M. javanica*.

Use of plant and their products is one of the economical and safe methods for controlling root-knot nematodes. These methods are low cost, easy to apply and also have the ability to improve soil texture and fertility (Feizi et al., 2014). Several plant-based products have been involved in plant-nematode interactions. These compounds include nematotoxicants, hatching inhibitors or stimulants, attractants and repellents (Chitwood, 2002). Toxic substances to parasitic nematodes have been identified in several plants (Akhtar and Malik, 2000; Oka, 2010). Different plant extracts have been evaluated in different studies for their nematicidal properties (Akhtar, 1999; Alam et al., 2002). Among plant extracts, cruciferous plants (Brassica carinata, Brassica rapa), velvet bean (Mucuna spp.), sunn hemp (Crotalaria juncea), Eucalyptus, marigold (Tagete spp.), Rakshak gold (a neem-based product), castor bean (Ricinus communis) and Chrommelina have been used successfully for controlling root-knot nematodes (Meloidogyne spp.) (Wang et al., 2002; Alam et al., 2002; Hooks et al., 2010; Mokrini et al., 2010; Umar et al., 2010; Ansari et al., 2016). Several studies showed decreasing densities of root-knot nematodes after application of various types of organic plants (Table 1).

Adegbite (2003) reported that plant extracts that contain flavonoids and alkaloids were found to have ovicicidal property to *Meloidogyne* eggs. Jourand et al. (2004) reported that the use of leaf extract from *Crotalaria virgulata* reduced significantly root galls caused by root-knot nematodes (*Meloidogyne incognita*) in tomato. Plant extracts of thyme (*Thymus vulgaris*), *Eucalyptus* spp., sweet wormwood (*Artemisia obsinthium*), fennel (*Foeniculum vulgare*), peppermint (*Mentha spicata*) reduced hatching activity of *Meloidogyne incognita* (Ibrahim et al., 2006). A number of nematicidal compounds including phenolic and salicylic acids, were reported by Shaukat et al. (2002) in the aqueous extract of powdered shoot of *Argemone mexicana*, which caused mortality of *M. javanica*. In addition, Ali et *al.*, (2002) reported a significant mortality *in vitro* of *M. javanica* resulting from the use of the methanolic extracts of *Lantana camara*.

Several studies have shown the efficacy of many neem preparations to manage plant-parasitic nematodes, including root-knot nematodes (Chitwood, 2002; Adegbite and Adesiyan, 2005; Bharadwaj and Sharma, 2007; Oka et al., 2007; Ntalli et al., 2009; Mokrini et al., 2010). In addition, several researchers reported high mortality of RKN by using different aqueous extracts of neem preparations (Aziz et al., 1995; Khurma and Singh, 1997; Akhtar, 2000). Fatoki and Oyedumade, (1996) showed that amendment of soil with neem leaves reduced significantly Meloidogyne in soil population. Ojo and Umar (2013) showed that the powder of cocoa bean reduced nematode population of M. javanica in tomato. Ashoub et al. (2010) showed that jojoba oil cakes can inhibit significantly *M. incoginta* reproduction, galls formation and egg masses production. Dongre and Sobita, (2013) showed that the extracts from Bael (Aegle marmelos), Eucalyptus (Eucalyptus globus), Congress grass (Parthenium argentatum) and Neem (Azadirachta *indica*) were found to be most effective in reducing the population of rice root knot nematode, Meloidogyne graminicola in rice and they concluded that these extracts increased the growth of the plants. Similarly, extracts of several plants including neem, castor bean, crotalaria, sesame (Sesamum indicum) and velvet bean, have been reported to be effective in controlling nematodes (Araya and Caswell-Chen, 1994; Chitwood, 2002; Alashalaby and Noweer, 2003).

Several studies were reviewed by Thoden et al. (2011) in which *Meloidogyne* spp. populations were increased by using several organic amendments and they explained this result by the interaction between several factors including the number of application per year, nematode community, soil infestation level and finally the composition of organic amendment. Goswami (1993) showed that populations of Meloidogyne incognita associated with cowpeas were lower in soil amended with Azadirachta indica than in dried and autoclaved soils. Several species of marigolds extracts (Tagetes spp.) including African marigold, T. erecta, the French marigold, T. patula, and the South American marigold, T. minuta were tested against several plant parasitic nematodes. These are effective in controlling nematodes (Bridge, 1996). Rangaswamy and Reddy (1993) reported that leaf extracts of Tagetes patula and indian mustard significantly reduced root galling and egg mass production of Meloidogyne incognita in green house trials. Several studies showed that the use of Artemisia dracunculus, A. verlotorum, A. absinthium reduced populations of both *M. incognita* (Dias et al., 2000) and Ditylenchus dipsaci (Tim-chenko and Maiko, 1989).

NEMATICIDE ACTIVITY OF BOTANIC OIL

Several essential oils from medicinal and botanical plants have been found to be effective for controlling several plant parasitic nematodes including root-knot nematodes

Plant extracts	Used Plant Parts	Target nematode	Crops	Reference
Tagete erecta	Flower and root	Meloidogyne incognita	Tomato	Sankari Meena et al. (2010)
T. patula, T. erecta, T. minuta	Root	Meloidogyne incognita	I	Cannayane and Rajedran (2002)
T. erecta	Flower and root	Meloidogyne incognita	Tomato	Sankari Meena et al. (2010)
Melia azedarach	Leaves, seed	Meloidogyne incognita	Sunflower, Tomato, Cucumber	Singh et $al.$ (2001); Mokrini et $al.$ (2010); Nafiseh katooli et $al.$ (2010)
Azadirachta indica	Leaves and seed	Meloidogyne incognita	Sunflower	Singh et al. (2001); Bharadwaj and Sharma (2007)
Tagete erecta Neem	Leaves	Meloidogyne javanica M. incognita	Tomato Sovbean	Abid and Maqbool (1991); Walia et <i>al.</i> (1994); Atungwu et <i>al.</i> (2009)
Argania spinosa	Oilcake and leaves	Meloidogyne spp.	Melon and cucumber	Azim (2005)
Murraya koenigii L	Leaves	Meloidogyne incognita	Tomato	Usman and Siddigui (2011)
Vitex negundo L.	Leaves	Meloidogyne incognita		Usman and Siddiqui (2011)
Calotropis procera	Leaves	M. incognita;	Tomato	Tiyagi et <i>al.</i> (2009)
Thevetia peruviana	Leaves	M. incognita;	Tomato	Tiyagi et <i>al.</i> (2009)
Argemone maxicana and Solanum xanthocarpum	Leaves	M. incognita; Rotylenchus reniformis	Eggplant, cauliflower	Ajaz and Tiyagi (2003)
Karanj (Millettia pinnata) and Moutard		M. incognita	Tomato	Goswami and Meshram, (1991)
Subabool (<i>Leucaena leucocephala L.</i>)	Leaves	M. javanica	Tomato	Walia et <i>al.</i> (1994)
Gylricidia maculata, Ricinus communis, moringa oleifera	Leaves	Radopholus similis		Jasy and Koshy (1992)
Moringa oleifera	Leaves	M. incognita	Eggplant	Murslain et al. (2013)
Brassica campestris L.	Leaves	M. chitwoodi; M. javanica	Potato, Tomato	Mojtahedi et al. (1991); Oduor-Owino et al. (1993)
Bitter leaf and Cashew	Leaves and seeds	M. incognita		Umar and Aji (2013)
Castor bean (Ricinus communis L.)	Seed	Meloidogyne spp.	Tomato	Mokrini, (2005), Adomako and Kwoseh (2013)
Hunteria umbellata	Leaves	M. incognita	Cashew (Anacardium occidentale)	Okeniy et <i>al.</i> (2014)
Calotropis procera; Datura stramonium, Ricinus communis		M. javanica	Brinjal	Nandal and Bhatti (1990)
Cymbopogon citratus; Acacia alata; Acalypha ciliata; Ocimum gratissimum	Leaves	M. incognita		Olaniyi et <i>al.</i> (2005)
Bael (Aegle marmelos), Jatropha (jatropha curcas), Eucalyptus (eucalyptus globus)		M. graminicola	Rice	Mukesh and Sobita (2013)
Mexican marigold (Tagetes minuta), Lantana (Lantana camara)	Leaves	M. incognita	Tomato	Taye et <i>al.</i> (2013)
Baker tree (Milletia ferruginea)	Seeds	M. incoginta	Tomato	Taye et <i>al.</i> (2013)
Calotropis	Seeds	M. incognita; M. javanica	Cicer arietinum	Maheswari et al. (1997)
Datura stramonium; Azadirachta indica; Crotolaria juncea	Leaves	M. incognita	Mulberry	Nelaballe and Mukkara (2013)
Datura fastuosa, Bougainevillea glabr, Calotropis gigantia, Ocimum sanctum, Allium cepa	Leaves	M. incognita	Pigeon pea	Upadhyay et <i>al.</i> (2007)
Datura stramonium	Leaves	M. javanica		Parihar et al. (2012)
Cassia tora and Morus alba	Leaves	M. incognita	Chickpea	Tanweer et <i>al.</i> (2009)
Crotalaria virgulata	Leaves	M. incognita	Tomato	Jourand et <i>al.</i> (2004)
Chrysanthemum coronarium		Meloidogyne spp.	Tomato	Bar-Eyal et <i>al.</i> (2006)
Cassava peelings, cocoa pod husk and rice husk		Meloidogyne spp.	Cowpea	Egunjobi and Olaitan (1986)
Turmeric (<i>Curcuma longa</i>); Marwa tulsi (<i>Origanum majorana</i>), Mint (<i>Metha arvensis</i>)	Leaves	M. incognita	ı	Goel et <i>al.</i> (2017)
Wild spinach (Solanum nigrum L.), Ivy gourd (Coccinia grandis)	Seeds and leaves	M. incognita	Tomato	Asif et <i>al.</i> (2016)
<i>Tagete patula</i> , Indian mustard	Leaves	M. incognita	Tomato	Rangaswamy et al. (1993)

Table 1: Different botanical plant extracts used for controlling plant-parasitic nematodes

in vegetables (Oka et al., 2000; Park et al., 2005; Sivakumar and Gunasekatan, 2011; Table 2). The essential oils Foeniculum vulgare, Mentha rotundifolia, neem, azadirachtin and nimbin, salannin showed the highest nematicidal activity in vitro and those from Coridothymus capitatus and Origanum vulgare reduced significantly root-galling caused by RKN of cucumber seedlings when mixed with sandy soil (Akhtar, 2000; Oka et al., 2000). Abd-Elgawad and Omer (1995) reported that the essential oils of four medicinal plants Mentha spicata, vulgaris, Majorana bortensis and Mentha longifolia increased nematode mortality. Meyer et al., (2008) showed that volatiles of clove oil reduced the number of Meloidogyne incognita in vitro. Similarly, Neem oil based formulation controlled Meloidogyne incognita associated with tomato and chickpea (Javed et al., 2008; Akhtar and Mahmood). Pendey (2000) reported that the oils of Eucalyptus citriodora, and Ocimum basilicum had significant impact on the control of *Meloidogyne incognita*, however these three oils were highly toxic even at lower concentration (250 ppm). Nafiesh et al., (2010) concluded that castor bean and chinaberry reduced the population of *M. incognita* in soil (Nafiesh Katooli et al., 2010). Vouyoukalou and Stefanoudaki (1998) showed that egg masses and root galling caused by both M. javanica and M. incognita were reduced after application of waste water from the olive oil to the soil. The same result was also obtained when fresh olive was incorporated into the soil (Rodriguez-Kabana et al., 1992; 1995). Goswami (1993) showed that the mustard oil-cake affected the mortality of *M. incognita*.

ANIMAL MANURE AND ITS COMPOSTS

Composted animal manures have been evaluated in several studies for their capacity to control various plant parasitic nematodes (Akhtar and Mahmood, 1996; Renčo *et al.*, 2009; 2011; D'Addabbo *et al.*, 2011). A positive relation between the application of compost and the control of PPN was reported in several studies (McSorley and Gallaher, 1996; Everts *et al.*, 2006). Kerkeni *et al.*, (2007) reported that different composts prepared from poultry, sheep, cattle and horse manures reduced significantly the population of *Meloidogyne incognita* and galling index on tomato roots due to the presence of predatory nematodes.

De Jin *et al.*, (2005) showed that compost contains chitinolytic bacteria producing enzymes, like chitinase, that suppress plant parasitic-nematodes in tomato plants and reduce their population. They concluded that the level of nematode suppression depends on several factors including the maturity of the final product, the type of composting process, the application rate and the nematode species (Rivera and Aballay, 2008; McSorley, 2011).

Numerous studies have reported the effect of microorganisms on nematode suppression in soils after application of animal manures (Oka, 2010; Kaplan and Noe, 1993). Wachira *et al.*, (2009) showed that the number of fungi increased in soil resulting from application of chiken manure. Ismail *et al.*, (2006) obtained highest suppression of *Rotylenchulus reniformis* with lower C/N ratio in soil amended with composts. Gonzalez and Canto-Saenz, (1993) reported that chicken and steer manures reduced the numbers of citrus nematodes and potato cyst nematodes and increased their yields. El Hajji and Horrigne-Raouani (2012) reported that incorporation of cattle manure (70 T/ha) improved potato growth and decreased the multiplication rate of *M. javanica*.

CONCLUSION

Accumulating evidence show that the use of soil organic amendments, such as green manures, animal manures, composts or slurries, has the potential to be part of plant health management scheme by improving soil quality and suppressing plant-parasitic nematodes. The beneficial effects of organic incorporation have been generally considered to be due to increase in soil nutrients, improvement in soil physical and chemical properties, and direct or indirect stimulation of predators and parasites of phytoparasitic nematodes; though some recent studies reported an increase of plant-parasitic nematodes after the use of organic amendments. Further research is needed to determine the mechanisms that underpin suppression of plant-parasitic nematodes. Overall, organic amendments hold significant promise for effectively promoting sustainable agriculture. Their use as a means for managing plant parasitic nematodes can be synergistically improved by making combination with other cultural and biological nematode management strategies.

Botanical oils	Target nematode	Crops	Reference
Chinaberry and castor bean	Meloidogyne incognita	Cucumber	Katooli <i>et al.</i> , (2010)
Clove	M. incognita	-	Meyer et al., (2008)
Neem	M. incognita	Tomato; Chickpea	Akhtar and Mahmood (1997); Javed <i>et al.</i> , (2008)
Mustard, neem and groundnut	M. incognita	Eggplant	Alam et al., (1980)
Neem, castor, sunflower	M. incognita	Chichpea	Tiyagi and Ajaz (2004)
Groundnut, Sunflower and Soybean	Plant parasitic nematodes	Chichpea	Rizvi <i>et al.</i> , (2012)
Brassica spp.	Tylenchulus semipenetrans	Citrus	Sinha and Neog (2002)
<i>Melia azadirachta</i> and <i>Brassica</i> spp.	M. incognita		Katooli et al., (2010)
Neem	M. incognita		Dourado <i>et al.</i> , (2013)
Clove	M. incognita		Meyer et al., (2008)
Fennel, apple mint, syrian oregano and oregano	Meloidogyne spp.		Oka (2000)
Neem, cotton, linseed	M. incognita	Vigna mungo	Rehman et al., (2014)
Neem, mustard, cotton	M. javanica	Brinjal	Barihar <i>et al.</i> , (2015)
Castor, neem, Simarouba glauca	M. graminicola	Rice	Prassad et al., (2005)

REFERENCES

- Abad, P., Gouzy, J., Aury, J.M., Castagnone-Sereno, P., Danchi, E.G.J, Deleury, E., Perfus-Barbeoch, L., Anthouard, V., Artiguenave, F., Blok, V.C., Caillaud, M.C., Coutinho, P.M., Dasilva, C., De Luca, F., Deau, F., Esquibet, M., Flutre, T., Goldstone, J.V., Hamamouch, N., Hewezi T, Jaillon, O., Jubin, C., Leonetti, P., Magliano, M., Maier, T.R, Markov, G.V., McVeigh, P., Pesole, G., Poulain, J., Robinson-Rechavi, M., Sallet, E., Segurens, B., Steinbach, D, Tytgat, T., Ugarte, E., van Ghelder, C., Veronico, P., Baum, T.J., Blaxter, M., Bleve-Zacheo, T, Davis, EL., Ewbank, J.J., Favery, B., Grenier, E., Henrissat, B., Jones, J.T., Laudet, V., Maule AG, Quesneville, H., Rosso, M.N., Schiex, T., Smant, G., Weissenbach, J., Wincker, P. (2008). Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat. Biotechnol., 26: 909-915.
- Abd-Elgawad M.M., Omer E.A. (1995). Effect of essential oils of some medicinal plants on phytonematodes. *Anzeiger Schadlingskunde*, 68: 82-84.
- Abid A., Maqbool, A. (1991). Effect of inter-cropping of *tagetes erecta* on root-knot diseases and growth of tomato. *Inter. Nematol. Net. Newsletter*, 7: 41-42.
- Adegbite, A.A. (2003). Comparative effects of Carbofuran and water extract of *Chromolaena odorata* on growth, yield and food components of root-knot nematodeinfested soybean (*Glycine max* (L.) Merrill). Ph.D. thesis, University of Ibadan, Nigeria.
- Adegbite, A. A., Adesiyan, S. O. (2005). Root extracts of plants to control root-knot nematode on edible soybean. *World J. Agric. Res.*, 1:18-21.
- Adomako, J. and Kwoseh, C. K. (2013). Effect of castor bean (*Ricinus communis* L.) aqueous extracts on the performance of root-knot nematodes (*Meloidogyne spp.*) on tomato (*Solanum lycopersicum* L.). J. Sci. Technol., 33: 1-11.
- Ajaz, S. and Tiyagi, S.A. (2003). Utilization of noxious weeds for the management of plant parasitic nematode infesting some vegetable crops. *Arch. Phytopathol. Plant Prot.* 36: 211-219.
- Akhtar, M. (1999). Plant growth and nematode dynamics in response to soil amendments with neem products, urea and compost. *Bioresour. Technol.* 69: 181-183.
- Akhtar, M. (2000). Nematicidal potential of the neem tree Azadirachta indica (A. Juss). Int. Pest. Manag. Rev., 5: 57-66.
- Akhtar M, Alam MM. (1993). Utilization of waste materials in nematode control: A review. *Bioresour. Technol.*, 45:1-7.
- Akhtar M., Mahmood I. (1996). Control of plant-parasitic nematodes with organic and inorganic amendments in agriculture soil. *Appl. Soil Ecol.*, 4: 243-247.
- Akhtar M., Mahmood I. (1997). Control of root-knot nematode *Meloidogyne incognita* in tomato plants by seed coating with Suneem and neem oil. *J. Pest Sci.*, 22: 37-38.
- Akhtar M., Malik A. (2000). Roles of organic soil amendments and soil organisms in the biological control of plant-parasitic nematodes: A review. *Bioresour. Technol.*, 74: 35-47.

- Alam M.M., Ahmad M., Khan A.M. (1980). Effect of organic amendments on the growth and chemical composition of tomato, eggplant and chilli and their susceptibility to attack by *Meloidogyne incognita*. *Plant Soil*, 57: 231-236.
- Alam S., Akhter N., Begun F., Banu M.S, Islam M.R., Chowdhary A.N., Alam M.S. (2002). Anti-fungal Activities (*in vitro*) of some plant extracts and smoke on four fungal pathogens of different hosts. *Pak. J. Biol. Sci.*, 5: 307-309.
- Alashalaby E.M., Noweer EMA. (2003). Effect of five plant extracts on the reproduction of root knot- nematode (*Meloidogyne incognita*) infested peanut under field condition. J. Agric. Sci., 28: 447-454.
- Ali N.I., I.A. Siddiqui, Shaukat S.S., Zaki M.J. (2002). Nematicidal activity of some strains of *Pseudomonas* spp. *Soil Biol Biochem.*, 34: 1051-1058.
- Ansari T., Asif M., Siddiqui M.A. (2016). Potential of botanicals for root knot management on tomato. Lambert academic publishing. pp: 1-105.
- Araya M., Caswell-Chen E.P. (1994). Penetration of Crotalaria juncea, Dolichos lablab and Sesamum indicum roots by Meloidogyne javanica. J. Nematol., 26: 238-240.
- Ashoub A.H., Abdel-Bary N.A., Yassin M.Y., Abd El-Razek G.M. (2010). Nematicidal potentiality of certain medicinal plants used as soil amendments against *Meloidogyne incognita*. *Egyptian J. Agronematol.*, 9: 57-67.
- Asif M., Khan A., Tariq A., Siddiqui M.A. (2016). Sustainable management of root knot nematode *Meloidogyne incognita* through organic amendment on *Solanum lycopersicum* L. *Asian J. Biol.*,1: 1-8.
- Atungwu J .J., Ademola A.A., Aiyelagbe O.O. (2009). Evaluation of organic materials for inhibition of nematode reproduction in Soybean. *Afr. Crop Sci. J.*, 17: 167-173.
- Aziz I., Ahmad R., Inam-ul-Haq M. (1995). Effect of insecticides and leaf extracts on egg hatching and larval mortality of root-knot nematode (*Meloidogyne javanica*). *Pakistan J. Phytopathol.*, 7:65–67.
- Bar-Eyal M., Sharon E., Spiegel Y. (2006). Nematicidal activity of *Chrysanthemum coronarium*. *Eur. J. Plant Pathol.*, 114: 427-433.
- Bharadwaj A., Sharma S. (2007). Effect of some plant extracts on the hatch of *Meloidogyne incognita* eggs. *Int. J. Botany*, 3: 312-316.
- Bridge J. (1996). Nematode management in sustainable and subsistence agriculture. *Annu. Rev. Phytopathol.*, 34: 201–225.
- Cannayane I., Rajendran G. (2002). Allelochemical action of certain plant extracts on eggs and juveniles of *Meloido-gyne incognita* (race 3). *Current Nematol.*, 13: 83-89.
- Chitwood D.J. (2002). Phytochemicals based strategies for nematode control. *Annu. Rev. Phytopathol.*, 40: 221-249.
- D'Addabbo T., Papajová I., Sasanelli N., Radicci V., Renčo M. (2011). Suppression of root-knot nematodes in potting mixes amended with different composted biowastes. *Helminthologia*, 48:278–287.

- Dias C.R., Schwan A.V., Ezequiel D.P., M. Sarmento C., Ferraz S. (2000). Efeito de extractos aquosos de plantas medicinais na sobrevive ncia de juvenis de *Meloidogyne incognita. Nematologia Brasileira*, 24: 203-210.
- Dongre M., Sobita S. (2013). Efficacy of certain botanical extracts in the management of *Meloidogyne graminicola* of rice. *Int. J. Agr. Sci. Res.*, 3: 91- 98.
- Dourado D.P., Lima F.S.O., Muraishi C.T. (2013). Use of different organic wastes in soils with carrot and infested with nematodes gall. *Revista Integralização Universitária, Palmas*, 7:157-161.
- Egunjobi O.A., Olaitan J.O. (1986). Response of *Meloidogyne incognita* - infected cowpea to some agro-waste soil amendments. *Nematropica*, 16: 33-43.
- El Hajji L., Horrigne-Raouani N. (2012). Efficiency of Solarization and incorporation of cattle manure in management of *Meloidogyne javanica* (Treub.) Chitwood and *Globodera pallida* (Stone) Behrens associated with potato. *Pest technol.*, 6 : 75-78.
- Elling A.A. (2013). Major emerging problems with minor *Meloidoygne species*. *Phytopathol.*, 103: 1092-1102.
- Everts K.L., Sardanelli S., Kratochvil R.J., Armentrout D.K., Gallagher L.E. (2006). Root-knot and root-lesion nematode suppression by cover crops, poultry litter, and poultry litter compost. *Plant Dis.*, 90: 487-492.
- Faruk M.I., Bari M.A., Nahar M.S., Rahman M.A., Hossain M.M. (2001). Managment of root knot nematode (*Meloidogyne spp.*) of tomato with two organic amendments and a nematicide. *Bangladesh* J. Plant Pathol., 17: 27-30.
- Fatoki O.K., Oyedumade (1996). Controlling effects of some plant leaves on the root-knot nematode, *Meloidogyne incognita* attacking tomato. *Nigeria J. Plant Prot.*, 16: 59-65.
- Feizi A., Mahdikhani- Moghadam E., Azizi M., Roohani H. (2014). Inhibitory effect of Allium cepa var. aggregatum, Salvia officinalis and Kelussiaodor atissima essence on the root-knot nematode (Meloidogyne javanica) and extraction of active ingredients. J. Plant Prot., 28: 220-225.
- Goswami G.W., Meshram N.J. (1991). Studies on comparative efficacy of mustard and karanj oil seed cakes with a nematicide, carbofuran, against root-knot nematode, *Meloidogyne incognita*, on tomato. *Indian J. Nematol.*, 21: 66-70.
- Goswami B.K. (1993). Effect of different soil amendments with neem cake on root knot nematode and soil mycoflora in cowpea rhizosphere. *Indian J. Plant Prot.*, 21:87-89.
- Hooks, CRR., Wang, K.H., Ploeg, A., McSorley, R. (2010). Using marigold (Tagetes spp.) as a cover crop to protect crops from plant-parasitic nematodes. *Appl. Soil Ecol.* 46:307-320.
- Hunt D.J., Handoo Z. A. (2009). Taxonomy, identification and principal species, in *Root-knot nematodes*. Perry, R., *et al.*, eds. CAB International, U.K.
- Ibrahim S.K., Traboulsi A.F., El-Hajj S. (2006). Effect of essential oils and plant extracts on hatching, migration and mortality of *Meloidogyne incognita*. *Phytopathol. Mediterr.*, 45: 238-246.

- Jasy T., Koshy P.K. (1992). Effect of certain leaf extract and leaves of *Glyricidia maculata* (H. B &K.) Steud. as green manure on *Radopholus similis*. *Indian J. Nematolol.*, 21: 39-51.
- Javed N., Gowen S.R., El-Hassan S.A., Inam-ul-Haq M., Shahina F., Pembroke B. (2008). Efficacy of neem (*Azadirachta indica*) formulations on biology of rootknot nematodes (*Meloidogyne javanica*) on tomato. *Crop Prot.*, 27: 36-43.
- Jones J.T., Haegeman A., Danchin E.G.J., Gaur H.S., Helder J., Jones M.G.K., Kikuchi T., Manzanilla-López R., Palomares-Rius J., Wesemael W.M.L., Perry R.N. (2013). Top 10 plant-parasitic nematodes in molecular plant pathology. *Mol. Plant Pathol.*, 14: 946-961.
- Jourand P., Rapior S., Fargette M., Mateille T.(2004). Nematostatic effects of a leaf extract from *Crotalaria virgulata* sub sp.*grantiana* on *Meloidogyne incognita* and its use to protect tomato roots. *J. Nematol.*, 6: 79-84.
- Kerkeni A., Horrigue-Raouani, N., Ben Khedher, M. (2007). Effet suppressif de cinq extraits de compost vis-à-vis du nématode à galles *Meloidogyne incognita*. *Nematol. Mediterr.*, 35: 15-21.
- Kaskavalci G. (2007). Effect of soil solarization and organic amendment treatments for controlling *M. incognita* in tomato cultivars in western Anatolia. *Turkish Agricultural Forum*, 31: 159-167.
- Katooli N., Moghadam E.M., Taheri A., Nasrollahnejad S. (2010). Management of root knot nematode on cucumber with the extract and oil of nematicidal plants. *Int. J. Agri Res.*, 5: 582-586.
- Koenning S.R., Overstreet C., Noling J.W., Donald P.A., Becker J.O., Fortnum B.A. (1999). Survey of crop losses in response to phytoparasitic nematodes in the United States for 1994. J. Nematol., 31: 587-618.
- Khurma U. R., Singh A. (1997). Nematicidal potential of seed extracts: *in vitro* effects on juvenile's mortality and egg hatching of. *M incognita* and *M. javanica*. *Nematol. Mediterr.*, 25: 49-54.
- Linford D.M. (1939). Attractiveness of roots and excised shoot tissues to certain nematodes. *Proc. helminth. Soc. Wash.* 6 : 11-18.
- McSorley R., Gallaher R.N. (1996). Effect of yard waste compost on nematode densities and maize yield. J. Nematol., 28: 655-660.
- Meyer SLF., Zasada IA., Tenuta M., Roberts D. (2005). Application of a biosolid soil amendment, calcium hydroxide and Streptomyces for management of rootknot nematode on cantaloupe. *HortTechnology*,15: 635-641.
- Mojtahedi H., Santo G.S., Hang A.N., Wilson J.H. (1991). Suppression of root-knot nematode populations with selected rapeseed cultivars as green manure. *J. Nematol.*, 23: 170-174.
- Mokrini F. (2005). Recherche de quelques méthodes biologiques et chimiques alternatives au bromure de méthyle contre les nématodes à galles à la culture de la tomate. Mémoire de troisième cycle, IAV-CHA, Agadir, Morocco. 77, pp.

- Mokrini F., Abbad Andaloussi F., El Aissami A. (2010). Effet de quelques extraits des plantes contre les nématodes à galles (*Meloidogyne incognita*) associés à la culture de la tomate dans la région du Gharb. *Proceeding 7^{ème} Congrès de l'Association Marocaine de Protection des Plantes*, Rabat, 2: 427-436.
- Murslain M., Javed N., Khan S.A., Khan H.U., H. Abbas, Munawar M. (2013). Efficacy of moringa leaves and *Trichoderma harzianum* on the invasion and development of *Meloidogyne javanica*. *Pak. J. Phytopathol.*, 25: 59-64.
- Nandal S.N., Bhatti D.S. (1990). Efficacy, persistence and field application potential of some weeds/shrubs for controlling *Meloidogyne javanica* on brinjal. *Nematol. Mediterr.*, 18:113-115.
- Neeraj N., Goel S.R., Kumar A., Singh G., Madan V.K. (2017). Effect of plant extracts on hatching and mortality of root-knot nematode, *Meloidogyne incognita* Larvae (*in-vitro*). *Biosciences Biotechnology research Asia*, 14: 467-471
- Nicol J.M., Turner S.J., Coyne D.L., den Nijs L., Hockland S., Maafi Z.T. (2011). Current nematode threats to world agriculture. In: *Genomics and Molecular Genetics of Plant-Nematode Interactions* (Jones, J.T., Gheysen, G. and Fenoll, C., eds), pp. 21-44. Heidelberg: Springer.
- Ntalli N.G., Menkissoglu-Spiroudi U., Giannakou I.O., Prpphetou-Athanasiadou D.A. (2009). Efficacy evaluation of neem (*Azadirachta indica* A. Juss) formulation against root- knot nematode, *Meloidogyne incognita*. J. Crop Prot., 28: 489-494.
- Oduor-Owino P. Waudo S.W., Maskhatsa L. (1993). Effect of organic amendments on fungal parasitism of *Meloidogyne incognita* eggs and growth of tomato (*Lycopersicon esculentum* Mill). *Int. J. Pest Manag.*, 39: 459-461.
- Ojo G.T., Umar I. (2013). Evaluation of Some Botanicals on Root-Knot Nematode (*Meloidogyne javanica*) in Tomato (*Lycopersicon esculentum*, Mill) in Yola Adamawa State, Nigeria. *Biological Forum-An International Journal*, 5: 31-36
- Oka Y. (2010). Mechanisms of nematode suppression by organic soil amendments-A review. *Appl. Soil Ecol.* 44: 101-115.
- Oka Y., Tkachi N., Shuker S., Yermiyahu U. (2007). Enhanced nematicidal activity of organic and inorganic ammonia-releasing amendments by *Azadirachta indica* extracts. J. Nematol., 39: :9-16.
- Oka Y., Nacar S., Putieusky E., Ravid U., Zohara Y., Spiegal Y. (2000). Nematicidal activity of essential oils and their components against the root knot nematode. *Phytopathol.*, 90, 710-715.
- Okeniyi M.O., Fademi O.A., Afolami S.O., Oduwaye, O.F. (2014). Effect of botanical extracts on root-knot nematode (*Meloidogyne incognita*) infection and growth of cashew (*Anacardium occidentale*) Seedlings. *The Agriculturist International Journal*, 21: 1-8.
- Olaniyi M.O., Moens M., Moermans M. (2005). Effects of soil amendments with herbs in the control of *Meloidogyne incognita* on tomato. *Nigerian Society for Plant Protection*, 22:140-148.

- Pandey R. (2000). Additive effect of three organic materials and nematicides on the reproduction of *Meloidogyne incognita* and yield of *Mentha arvensis*. *Nematropica* 30:154-160.
- Parihar K., Rehman B., Siddiqui M.A. (2012). Impact of organic additives for sustainable management of rootknot nematode in bottle gourd. *Biosci. Int.*, 1: 102-105.
- Parihar K., Rehman B., Ganai M.A., Asif M., Siddiqui Mansoor A. (2015). Role of oil cakes and *Pochonia chlamydosporia* for the management of *Meloidogyne javanica* attacking *Solanum melongena* L. J. Plant Pathol. Microbiol., S1: 004.
- Park I.K., Park J.Y., Kim K.H., Choi K.S., Choi I.H., Kim C.S., Shin S.C. (2005). Nematicidal activity of plant essential oils and their components from garlic (*Allium* sativum) and cinnamon (cinnamomum verum) oils against the pine wood nematode (*Bursaphelenchus* xylophilus). Nematol., 7: 767-774.
- Prasad J.S., Varaprasad K.S., Rao Y.R., Rao E.S., Sankar M. (2005). Comparative efficacy of some oil seed cakes and extracts against root-knot nematode (*Meloidogyne graminicola*) infection in rice. *Nematol. Mediterr.*, 33: 191-194.
- Radwan M.A., El-Maadawy E.K., Kassem S.I., Abu-Elamayen M.M. (2009). Oil cakes soil amendment effects on *Meloidogyne incognita*, root-knot nematode infecting tomato. *Arch. Phytopathol. Plant Prot.*, 42: 58-64.
- Ramanpreet Singh, H.K. Chhabra and Kaul, V.K. (2001). Effect of aqueous extracts of plant products on hatching and penetration of *Meloidogyne incognita* infecting sunflower. *Indian J. Nematol.*, 31: 34-37.
- Rangaswamy S. D., Reddy P. P., Joshi S. (1993). Histopathological and histochemical investigations on antagonistic trap crops (marigold and mustard) and susceptible tomato infested with *Meloidogyne incognita*. *Current Nematol.*, 4: 203-206.
- Rehman B., Ganai M.A., Parihar K., Asif M., Siddiqui, M.A. (2014). Biopotency of oilcakes against *Meloidogyne incognita* affecting *Vigna mungo. Eur.* J. Appl. Sci., 6: 57-63.
- Renčo M., Sasanelli N., Šalamún P. (2009). The effect of two compost soil amendments based on municipal green and penicillin production wastes, on plant parasitic nematodes. *Helminthologia*, 46:190-197.
- Renčo M., Sasanelli N., Kováčik P. (2011). The effect of soil compost treatments on potato cyst nematodes *Globodera rostochiensis* and *Globodera pallida*. *Helminthologia*, 3: 184-194.
- Rizvi R., Mahmood I., Tiyagi S.A., Khan Z., (2012). Effect of some botanicals for the management of plantparasitic nematodes and soil-inhabiting fungi infesting chickpea. *Turk. J. Agric. For.*, 36: 710-719.
- Rodriguez-Kabana R., Pinochet J., Calvet C. (1992). Olive pomace for control of plant-parasitic nematodes. *Nematropica*, 22:149-158.
- Rodriguez-Kabana R., Estaun V., Pinochet J., Marfa O. (1995). Mixture of olive pomace with different nitrogen sources for the control of *Meloidogyne* spp. on tomato. *J. Nematol.*, 27: 575-584.

- Sankari Meena K., Sivakumar M., Jonathan E.I., Devrajan K., Boopathi T. (2010). Management of *Meloidogyne incognita* in tomato through dry powder and aqueous extracts of *Tagetes erecta* cv. Indian yellow. *Pestology*, 34: 28-30.
- Sasser J.N., Carter C.C. (1985). Overview of international Meloidogyne Project. In: Sasser, J.N. and Carter, C.C. (Eds). An advanced treatise on Meloidogyne. Vol. 1: Biology and control. North Carolina State University Graphics, Raleigh, pp. 19-25.
- Shaukat S.S., Siddiqui I.A., Khan G.H., Zaki M.J. (2002). Nematicidal and allelopathic potential of *Argemone mexicana*, a tropical annual weed. *Plant and Soil*, 245: 239-447.
- Sikora R.A., Fernandez E. (2005). Nematode parasites of vegetables. In *Plant Parasitic Nematodes in Subtropical and Tropical Agriculture*, Luc M, Sikora RA, Bridge J (Eds) 2nd Edition, CABI Wallingford, UK. pp 319-392.
- Sivakumar M., Gunasekaran K. (2011). Management of root-knot nematode in tomato, chili and brinjal by neem oil formulations. *J. Biopest.*, 4: 198-200.
- Tanweer A., Hisamuddin, Swarn S. (2009). Efficacy of plant leaf powder and *Paecilomyces lilacinus* alone and in combination for controlling *Meloidogyne incognita* on chickpea. *Indian J. Nematolo.*, 39: 152-155
- Timchenko L.S, Maiko T.K. (1989). Nematicidal properties of plants antagonists of nematodes of decorative plants. *Byulleten' Vsesoyuznogo Instituta Gel'mintologii im. K. I. Skryabina.* 50: 81-84.
- Tiyagi S.A., Ajaz S. (2004). Biological control of plant parasitic nematodes associated with chickpea using oil cakes and *Paecilomyces lilacinus*. *Indian J. Nematol.*, 34: 44-48.
- Tiyagi S. A., Mahmood I., Rizvi R., Dev R.T. (2009). Utilization of medicinal plants for the management of root- knot and reniform nematodes infecting tomato and chilli. *Trends in Biosciences*, 2: 47-49.
- Umar I., Muhammad Z., Okusanya B.A.O. (2010). Effect of organic amendments on the control of *Meloidogyne javanica* (Kofoid and White, 1919) Chitwood, 1949) on Tomato (*Lycopersicon lycopersicum*, Mill). Agri. Bus. Technol. J., 8: 63-77
- Usman A., Siddiqui M.A. (2011). Application of methanolic extracts of botanicals for the management of *M. incognita* infecting tomato and chilli. *J. Funct. Environ. Bot.*, 1: 114-118.
- Uma Maheswari T., Sharma S.B., Reddy D.D.R., Haware M.P., (1997). Interaction of *Fusarium oxysporum* f.sp. *ciceri* and *Meloidogyne javanica* on *Cicer arietinum*. *J. Nematolol.*, 29: 117-26.
- Umar I., Aji M.B. (2013). Effect of Botanicals in the Control of *Meloidogyne incognita* (Kofoid and White) Chitwood on Soybean (*Glycine max* (L) Merr.). J. Agri. Vet. Sci., 4: 43-45.
- Upadhyay K.D., Dwivedi K., Uttam S.K. (2007). Role of plant parts and their extracts in the management of *Meloidogyne incognita* infecting pigonpea. *Indian J. Nematol.*, 37:197-224.

- Verdejo-Lucas S., Sorribas F.J., Puigdomenech P. (1994). Pérdidas de producción en lechuga y tomate causadas por *Meloidogyne javanica* en invernadero. *Investigación Agraria: Producción y Protección* Vegetales, 2: 395-400.
- Nelaballe V.K., Mukkara L.K. (2013). A preliminary study on the nematicidal effect of some local flora on *Meloidogyne Incognita* Chitwood infesting mulberry. *Inter. J. Chem. Environ. Biol. Sci.*,1: 2320-4087.
- Vouyoukalou E., Stefanoudaki E. (1998). Nematicidal activity of waste water from olive oil-mills. *Nematologia Mediterranea*, 26:157-160.
- Walia R.K., Bajaj H.K., Dalal M.R. (1994). Records of bacterial parasite, *Pasteuria* spp. on phyto and soil nematodes in Haryana (India), *Current Nematol.*, 5: 223-225.
- Wang K-H., Sipes B.S., Schmitt DP. (2002). *Crotalaria* as a cover crop for nematode management: A review. *Nematropica*, 32:35-57.
- Taye W., Sakhuja P.K., Tefera T. (2013). Root-knot nematode (*Meloidogyne incognita*) management using botanicals in tomato (*Lycopersicon esculentum*). Acad. J. Agr. Res., 1: 9-16.