In modern horticulture, the use of plant growth models is very important. Due to the complexity of factors involved in crop production and their interactions, our level of analysis and decision-making gradually improves according to model quality and its calibration with local conditions. In Agadir region, producers rely on their experience to make decisions on crop management and generally the quality component of the environment remains the weak point of this approach. In our study, we used a classical model of plant biomass production and introduced other physical equations to improve the model to relatively reflect the field reality. The results showed that developed models correctly simulate the biomass accumulation in tomato under the Monospan greenhouse. However, their efficiency has been improved by the introduction of key climatic factors involved in improving the greenhouse environment. Thus, in adverse climatic periods for plant growth (summer and winter periods), greenhouse operators can rely on net radiation data to simulate biomass accumulation and estimate production losses and cost. Similarly, the use of models of prevention against greenhouse bio-aggressors is another way of feeding tested models in order to develop a more robust global model which integrates a maximum of data necessary to produce decision taking information for sustainable management of horticultural production.

Keywords: Biomass model, greenhouse environment, sustainable production, cost, bio-aggressors, tomato.